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Abstract 

The possibility of solving by direct methods the dif- 
ference structure 6 of a superstructure using only the 
intensities of the superstructure reflections h is shown. 
The refinement of the phases • of the strong super- 
structure E values, which are normalized separately 
from the E values of the main or substructure reflec- 
tions, is carried out maximizing the function Z~p, = 
y ] h ( E h -  ( E h ) ) C h ( ~ ) ,  where Ch(~b ) is the amplitude of 
the structure factor of 63 expressed in terms of ~. The 
maximization is performed with a new tangent formula 
that only differs from that given previously [Rius (1993). 
Acta Cryst. A49, 406-409] by an extra summation, i.e. 
the phase information is now derived from quartets 
and negative quintets instead of triplets and negative 
quartets. A preliminary test calculation demonstrates the 
capability of this tangent formula to solve the difference 
structure of the mineral wermlandite using only the 
measured superstructure intensities. Although more tests 
covering a variety of situations are still required to 
allow for a generalization, this result seems to confirm 
the viability of determining the internal structure of 
reconstructed surfaces by interpreting the corresponding 
three-dimensional difference Patterson function by direct 
methods. Access to this function is now possible, since, 
with the advent of intense synchrotron sources, not 
only in-plane intensity data but also the corresponding 
diffraction rods can be measured. 

is a subgroup of index n of the space group of the 
average structure. If the subgroup is maximal and if 
the reduction of symmetry operations affects the number 
of lattice points, the resulting superstructure is called 
klassengleich (Hermann, 1929). The reduction of lattice 
points causes the appearance of superstructure reflections 
(h), which are systematically weaker than the main 
reflections (H). The different mean intensity of the 
two reflection sets is due to the different amounts of 
electron density that contribute to each set. This can be 
best illustrated with the one-dimensional superstructure 
in Fig. l(a) consisting of two heavy atoms with form 
factors fp placed at the origin of the 'subcells' (at x = 
0, 1/2) and of two lighter atoms with form factors fL at 
x = +x L. The structure-factor expression for the main 
(m) and superstructure (s) reflections are, respectively, 

Fm(H ) = 2fe + 2f L cos(27rHx L) 
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1. Introduction 

1.1. 'Klassengleiche' superstructures - some basic 
concepts and definitions 

A superstructure is a structure that can be regarded 
as a complication of a simpler one. This simpler or 
average structure ~ is obtained by averaging the elec- 
tron density over all n subcells of the supercell (or 
over all asymmetrical units) (Buerger, 1959) (Fig. 1) 
and contains per volume unit n times more symmetry 
operations than the superstructure, i.e., according to the 
theory of groups, the space group of the superstructure 
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Fig. 1. (a) p(x) = one-dimensional superstructure of replacive 

type (n = 2); (b) ~(x) = average structure; (c) 6(x) = difference 
structure; (d) 6P(u) -- difference Patterson. 
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and 
F=(h) = 2fL cos(27rhxL), 

i.e. the h reflections are systematically weaker because 
the heavy atoms only contribute to the main reflections. 

The difference structure 15 (Fig. 1) is defined as the 
difference between the superstructure and the average 
structure (Tak6uchi, 1972), i.e. 

6(x) = p(x) - ~(x). (1) 

The difference structure 6 has the same symmetry as 
the superstructure but, in contrast to the average struc- 
ture, has positive and negative values. Depending on 
what happens to a given site when passing from the 
space group of the average structure to the subgroup of 
the superstructure, different peak distributions will be 
obtained in 6. Three cases may be distinguished. 

(a) The site symmetry is reduced, the multiplicity is 
maintained and, consequently, the site can gain addi- 
tional degrees of freedom. In this way, one atom can shift 
from its ideal position, giving rise to an antisymmetric 
peak in 6. If most peaks in 6 are antisymmetric, the 
superstructure is of displacive type (Fig. 2). Fig. 3 shows 
the shape of the antisymmetric peaks for different shifts 
t. Inspection of this figure gives the conclusion (Allmann 
& Rius, 1985) that, for small shifts (t _< ltr/~,): (i) the 
separation s between the maximum and the minimum of 
the peak is almost constant (~  2or ~); and (ii) the height 

t 

(2 

(a) 

(b) 

s 

(c) 

, ~ , [  (d) 

Fig. 2. (a) p(x) = one-dimensional superstructure of displacive 
type (n ---- 2) built of  Gaussian 'atomic' peaks with standard devia- 
tion tr; (b) ~(x) -- average structure; (c) t~(x) -- difference structure; 
(d) t~P(u)=  difference Patterson. t is the atomic shift from the 
ideal position and s is the maximum-to-minimum separation in the 
antisymmetric peaks (for t < cT, s = 2or; for t > tr, s ~ 2t). 

of the maximum of the peak decreases with decreasing 
t. This result was confirmed by analyzing the triclinic 
superstructure of Na10(H2WleO42) • 27HeO (Rius, 1980; 
Allmann & Rius, 1985). In this compound, the averaged 
shift (t) for the 12 W atoms is 0.14/~, while the found 
separation is 1.0/~, i.e. much greater than the observed 
shift. 

(b) The site symmetry is preserved when the site sep- 
arates and different atom types can occupy the resulting 
sites. This produces separate positive and negative peaks 
in 6 and the corresponding superstructures are called of 
replacive type (Fig. 1). 

(c) A decomposition of the site in different parts is 
also possible, e.g. one part maintains the symmetry while 
the other increases the number of degrees of freedom. 
This produces antisymmetric as well as separated posi- 
tive and negative peaks in the corresponding 6. In any 
case, the site decomposition must satisfy the equation 

t 

n = p ~'~p7 I, (2) 
j = l  

where n is the index of the subgroup, p is the order of 
the site-symmetry group before symmetry reduction and 
t is the number of resulting site types with orders pj 
after symmetry reduction. 
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Fig. 3. Shape of  the antisymmetric peaks in ~ for different shifts 
t corresponding to the one-dimensional superstructure in Fig. 2 
(only the positive part of the peak is represented). The stippled line 
through the maxima clearly shows that, for small shifts (t _< l a) ,  
the maximum-to-minimum separation s is almost independent of t. 
To give an idea of  the peak heights, the Gaussian 'atomic' peak is 
also reproduced. 
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The average and difference structures can be obtained 
from the partial Fourier syntheses 

~(x) = V -I  ~ Fro(H) exp(-i27rH • x) (3) 
H 

6(x) = V -I ~ Fs(h) exp(-i27rh • x). (4) 
h 

In general, the phases qom(H) necessary to calculate 
can be easily derived by conventional direct methods 
using the intensities of the H reflections. According to 
(1), however, the determination of the superstructure 
also requires the solution of 6. Unfortunately, use of 
conventional direct methods to find the values of the 
phases ~s (h) directly from the intensities of the subset of 
superstructure reflections is rather difficult, since, unlike 
~, the difference structure 6 has positive and negative 
values. To overcome this difficulty, two different cate- 
gories of method exist. Methods of the first category use 
the intensities of the main reflections to help to derive the 
phases of the superstructure reflections (Fan, He, Qian 
& Liu, 1978; Brhme, 1982; Fan, Yao, Main & Woolf- 
son, 1983; Gramlich, 1984; Cascarano, Giacovazzo & 
Luir, 1988). Most direct-methods programs for solving 
superstructures belong to this category, e.g. SAPI (Fan 
et al., 1990), SIR (Cascarano et al., 1985) and DIRDIF 
(Beurskens et al., 1990). In general, these programs 
solve a large variety of superstructures directly. Para- 
doxically, the advantage of exploiting the information 
provided by the main intensities can tum into a limi- 
tation for some specific applications, e.g. in the study 
of reconstructed surfaces where the main intensities 
are more difficult to analyze than the superstructure 
intensities due to the contribution from the bulk. The 
second category of methods does not suffer from this 
limitation because these methods only use the intensities 
of the superstructure reflections. Until now, there was 
only one method belonging to this category, i.e. the 
direct interpretation of the difference Patterson function 
(Takruchi, 1972), which is briefly described in the 
next section. Recently, this method has experienced a 
revival in the determination of reconstructed surfaces 
(Rossmann et al., 1992; Ferrer, Torrelles, Etgens, van der 
Vegt & Fajardo, 1995). Unfortunately, its interpretation 
is very often far from trivial. Consequently, efforts have 
been devoted to finding an alternative method suitable 
for being automated. This method is described in §2. 

1.2. The direct interpretation of  the difference Patterson 

The difference Patterson function is defined as the 
integral (Takruchi, 1972) 

depends on the replacive or displacive nature of the 
superstructure (Figs. ld and 2d). For klassengleiche 
superstructures, 6P can be calculated with the synthesis 

6P(u) : ~ IFs(h)l 2 exp(-i27rh, u). (6) 
h 

The use of the difference Patterson function to 
solve order-disorder problems was introduced by Frueh 
(1953) and Buerger (1956). Later, more sophisticated 
approaches for interpreting the Patterson peaks were 
developed by Qurashi (1963) and Tak6uchi (1972). Two 
notable applications are the solutions of the 13-fold 
hexagonal superstructure of Cu7As6Sel3 (Takruchi & 
Horiuchi, 1972) and of bornite (Koto & Morimoto, 
1975). 

One advantage of this procedure is that the main 
reflections are not required in the calculation of 6P, 
even though the knowledge of the average structure is 
of great help for its interpretation. The two principal 
disadvantages are, firstly, the cancellation of positive 
and negative peaks in 6P, which can lead to incomplete 
vector sets, and, secondly, the difficulty of automating 
the whole interpretation procedure. 

2. The interpretation of the difference 
Patterson 6P by direct methods 

Conventional direct methods rely on the similarity be- 
tween p and p~. This similarity is a consequence of 
the positivity and peaked nature of p. However, this is 
not true for 6. Since it contains positive and negative 
peaks, the power of conventional direct methods to 
solve it is weakened. One solution is to suppose that 

is similar to 6 3 , i.e. if the structure factors of 
and 6 3 are, respectively, Es(h) : E,.(h) exp[iqo~(h)] and 
C(h) = C(h)exp[i~(h)], the assumption is made that 

~,(h) ~ a(h). (7) 

For convenience, let the set of superstructure reflections 
h (the E magnitudes of which have been normalized 
separately from those of the main or substructure reflec- 
tions) be divided into two subsets, namely the subset 
containing the superstructure reflections with largest 
E magnitudes (k reflections) and the complementary 
one including the remaining superstructure reflections 
(! reflections). If ~/' denotes the collectivity of phases of 
the k reflections, and if the resolution of the intensity 
data is high enough to produce well resolved peaks in 
& it follows that 

r e ( u )  : v J  6(x)6(x + u) dx. (5) 
V 

Ch(~) = ~] ~ E,(k ')E~(k')E~(h - k' - k ' ) .  (8) 
k' k"  

Unlike the normal Patterson function, 6P(u) contains Hence, in view of (7), the amplitude Ch in terms of 
positive and negative maxima, the form of which • may be approximated by 
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C h ( ~ )  -- C h ( ~ ) e x p [ i o ~ ( - h ) ]  

exp[i~.,,(-h)] 

x ~ ~ E,.(k')E,.(k")E~(h - k'  - k ' ) .  (9) 
k ~ k" 

In parallel to Rius (1993), let 6P' and bT'(~) be the 
6P-type Fourier syntheses 

6/:U(u) : V -1 ~--]~[E,(h)- (E, ) ]exp(-27r ih-u) ,  (10) 
h 

(~7"(U, ~ )  -- W -1 ~ C h ( ~ )  e x p ( - 2 7 r i h ,  u ) ,  
h 

(11) 

condition is solved for the limit of Z~p, (~), 

O Z 6 p , ( ~ 5 ) / O ~ g s ( k )  = 0 for all k, (15) 

which, finally, leads to the Z~p, tangent formula 

{k~,E ' . .  k ' , k "  ~,.(k) = phase of ,(k ) ~ X(k, ) 

× E (k")E ( k -  k ' - k ' ) +  ~--~[E ( l ) -  <E)] 
I 

xexp[i~(l)] ~ E ( k " ) E ( k - k " - l ) [ ,  (16) 
k" ) 

the first one with the origin peak removed and the 
second one expressed in terms of ~b. Next, the integral 
measuring the coincidence between the observed bP' and 
the calculated b7"(~) is defined: 

Z,~p,(~) = v f 6PJ(u)bT~(u,~/') du 
V 

= ~--]~[E,.(h)- (Es)]Ch(~b), (12) 
h 

which can be also written as the sum of the products of 
the Fourier coefficients of (SP' and 67'. By introduction 
of the partition of h into k and 1, it follows that 

Z~p,(qs) = ~--]~[E ( k ) -  ( E s ) ] C k ( q  3) 
k 

+ ~-~[E.,(I)- (E)]C,((b) 
I 

= y']~[E.,(k) - (E.,.)] exp[i~,.(-k)] 
k 

× Z ~ E ( k ' ) E ( k ' ) E ~ ( k -  k' - k") 
k' k" 

+ ~-]~[E,.(I) - (E.)] exp[i(~(l)] 
I 

x ~ ~ E , ( - k ) E  (k")E,.(k - k" - 1) 
k k" 

- ~ E . ( - k ) { k ~ X ( k , k ' , k "  E k' E k" - 1 , ( ) , (  ) 
k k" 

x E . ( k -  k ' - k " ) +  ~-~[e (1 ) -  (E,.)] 
I 

× exp[i(~(l)] ~ E (k")E, (k  - k" - ! ) }  

(13) 

with 

X ( k , k ' , k " )  = 1 - ((Es)/4)[Es(-k) -1 + E,.(k') -1 
+ E~(k") -I  + E,(k - k / -  k" ) - I ] .  

(14) 

Z~,p,(~b) is expected to be a positive maximum for 
the correct ~. By use of the same procedure as in 
Debaerdemaeker, Tate & Woolfson (1985), the new 
phase estimates maximizing Zrp(~) can be found if the 

where the phases c~(l) are periodically recalculated from 
Cl(~). The Z~p, tangent formula differs from the tangent 
formula given by Rius (1993) by the additional summa- 
tion over k", i.e. it uses exclusively information provided 
by quartets and quintets. For the moment, the practical 
application of (16) is limited by the large number of four- 
phase relationships involved in its calculation, especially 
when the number of refined phases is large. In compari- 
son with p, the difference structure 6 contains less peaks. 
Consequently, the Z~,p, tangent formula is expected to be 
effective in spite of its increased complexity. 

Finally, it should be mentioned that refinement of 
phases maximizing Z+p,(~b) is not able to distinguish 
between b(x) and its negative replica -b(x) .  Effec- 
tively, if ~h + 7r and ~h + 7r are, respectively, the 
phases associated with the structure factors of -b (x)  
and -b(x)  3, then it follows, after replacing them in (13), 
that Z~e,(~) = Zep,(~n). Consequently, both solutions 
~h and ~'h + :r are equally probable. 

3. Test calculation 

To demonstrate the capability of the Z+p, tangent 
formula to solve difference structures using only 
the intensities of the superstructure reflections, the 
double-layer mineral wermlandite was selected (Rius 
& Allmann, 1984). The crystal structure of wermlandite 
consists of two alternating layers: a brucite-like 
layer of composition [Mgv(A10.57Feo.43)2(OH)ls] 2+ 
and a completely ordered interlayer of composition 
[(Cao.6Mg0.4)(SO4)z(H20)~2] 2-. The internal structure of 
the interlayer is shown in Fig. 4. The cell dimensions 
are a = b = 9.303, c = 22.57/~, and the space group is 
P3cl with Z - 2. Inspection of the diffraction pattern 
indicates that the layers with l even are much stronger 
(19% unobserved reflections) than the layers with l 
odd (47% unobserved reflections). The most relevant 
information extracted from the analysis of the intensity 
data is summarized in Table 1. The superstructure and 
the average structure have the same unit cell except for 
the length of the c parameter, which is doubled (c = 2c'). 
Since n = 2, both solutions 6 and - 6  will be equivalent. 
The c' distance corresponds to the separation between 
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Table 1. Information about the average structure (-p) 
and the superstructure of  wermlandite extracted from 

the intensity data 

The designation k(2) (k = klassengleich) corresponds to that of 
B~rnighausen (1975) and indicates the type and index of symmetry 
reduction. 

2c', k(2) 

P3ml (cell of the ~ structure) 
h k I (l = 2n) 

510 reflections (98 unobserved) 

P3cl (superstructure cell) 
h k l  

779 reflections (224 unobserved) 

brucite-like main layer and interlayer. According to their 
symmetry, the atoms in wermlandite can be grouped 
into the following: 

(a) Atoms with P3ml symmetry, i.e. the main layer 
atoms and Ca 2+, S and the apical O atom of the SO 2- 
group. Since P3ml is the symmetry of ~, they will not 
contribute to 6 and will not be further considered. 

(b) Atoms with P3cl symmetry, i.e. the water 
molecules 0(4) and O(5), and the atom 0(6) forming 
the basis of the SO~- group. Since the superstructure is 
of index n = 2, the corresponding averaged positions in 

have half-weight (Fig. 2 in Rius & Allmann, 1984). 
These atoms appear as separate positive and negative 
peaks with half-weight in 6. 

The solution of 6 using only superstructure reflections 
has been done with a slightly modified version of XLENS 
(Rius, 1993) to allow the extra summaton over k". 

The 168 superstructure reflections with d > 0.96/~ 
were introduced in the program and the corresponding 
intensities normalized (overall B fixed at 3 ~2). The 
program was selected to refine the phases of the 20 
strongest E values (5060 quartets of the s -s -s -s  type). 
The program automatically selected the 16 weakest re- 
flections for their active use during the phase refinement 
(6368 quartets of the w-s-s - s  type; (E,) = 1.11). The 
number of refined sets was 100 and the number of 
calculated cycles in each set was 13. The most probable 
solution was considered that with largest Z6p, (~/i) and 
with )-]~ IC~(~/i)l as small as possible. The RESIDUAL 
figure of merit was not used owing to the difficulty of 
calculating the expected Ck. This calculation requires 
the prior estimation of the probability distributions of 
the involved four-phase invariants (Hauptman, 1974), 
which is uncertain when at least one cross term is a main 
reflection. An extreme case is provided by the present 
example where all cross terms are main reflections. To 
compensate, a new figure of merit with no parallel in 
conventional direct methods is suggested based on the 
summation 

-- ~-~ ~-']~k ~ ' ' H  k' E, , (k ' )E~(k" )Es (H-k ' -k" )  2, IC . (~) l  ~ 
H 

(17) 

which should be a small quantity for the correct solution. 
Fig. 5 shows section (x,y, z ~ 0.44) of 6 obtained 

from the solution selected according to the above cri- 
terion. Comparison of Figs. 4 and 5 shows the almost 

8 ( ~ - .  

Fig. 4. Interlayer of wermlandite. For clarity, only the portion of 
the interlayer at z ~ -0.08 is represented. The rest is related by 
the inversion center at the origin. Ca 2+ at (0, O, 0) is octahedrally 
coordinated by H20(5), which is H-bonded to O(6} (basis of the 
SO~- group) and to H20(4). Atom 0(7) (apex of the SO,~- group) 
acts as acceptor of three H bonds from H20(4) IS and 0(7) 
at (2/3, 1/3 , -0 .057)  and (I /3,  2 /3 , -0 .005) ,  respectively]. Only 
H20(4), H20(5) and 0(6) have P3cl symmetry. 

Fig. 5. Section (x, y, z ~- -0.08) of the difference structure ~ of 
wermlandite obtained by applying direct methods to superstructure 
intensities only (black = positive, grey -- negative values). The 20 
phases of the strongest E values involved in the calculation of/~ 
were refined with the Z~p, tangent formula. Notice the nearly exact 
correspondence between the positive peaks of ~ and the positions 
of H20(4), H20(5) and 0(6) in Fig. 4. Image obtained with FAN 
(Vernoslova & Lunin, 1993). 
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exact correspondence of the positive peaks of 6 with 
the positions of H20(4), H20(5) and 0(6). Only 0(6)  
shows a split peak, the stronger one corresponding to the 
correct position of 0(6). This result clearly demonstrates 
the possibility of solving the difference structure of 
wermlandite by refining the phases of the superstructure 
reflections with the Z6p, tangent formula. 

This work was supported by the Spanish DGICYT 
(Project PB92- 010) and the 'Generalitat de Catalunya' 
(GRQ93-8036). 
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